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INTRODUCTION
Myelodysplastic syndrome (MDS) is a neoplastic disease of hematopoietic stem 
cells with abnormalities involving the immune system. Therefore abnormalities 
can be detected in myeloid lineage as well as reactive lymphoid cells. Diagnosis 
of MDS has improved significantly with the recent characterization of the 
molecular abnormalities of this disease. Detection of significant clonal molecular 
abnormalities typically detected in MDS is currently considered sufficient for the 
diagnosis of MDS. However, flow cytometry analysis remains the first line in the 
diagnosis of hematopoitic neoplasms. Absence of the expression of antigen on 
some cells, or increases or decreases in specific populations of cells can be 
diagnostic for MDS. Therefore, in principle, diagnosis of MDS relies on detecting 
these abnormalities in hematopoietic cells. However, other reactive processes 
can manifest with features overlapping with those of MDS, especially in early 
stages of the disease. Using pattern recognition-based approaches incorporating 
multiple variables from flow cytometry has been demonstrated to be the best 
approach for reliable diagnosis of MDS by flow cytometry. Multiple flow cytometry-
based scoring systems have been developed for the diagnosis of MDS. However, 
most of these studies of various scores used conventional diagnostic confirmation 
of MDS diagnosis, which remains less objective. 

The most commonly studied scoring system is the “Ogata score”, which uses the 
percentage of CD34+, percent of B-cell within the CD34+, intensity of CD45 on 
immature myeloid as compared with lymphoid cells, and the granularity in the 
mature granulocytes. The sensitivity of this score was reported between 65% and 
89% and the specificity between 90% to 98%. However, this approach was 
reported to be very limited in hypocellular BM and pediatric patients. Other 
studies reported more significant limitations in low-risk MDS.

However, most of these scores involve subjective parameters that are difficult to 
standardize. We developed a flow cytometry software with a capability to 
automatically capture relevant parameters of each gated cell population and use 
the generated metadata in an algorithm for the diagnosis and prediction of 
molecular abnormalities in MDS. 
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METHOD RESULTS

PATIENTS
• 294 bone marrow samples were used 

for training 
• 115 bone marrow samples were used 

for validation 
• 108 samples refereed with diagnosis 

of AML were also tested using the 
algorithm

• All samples were referred for suspected 
diagnosis of MDS due to cytopenia 

• All samples had molecular evaluation 
by NGS using 54 gene panel 

• Majority had cytogenetic data
• Patients classified as having MDS if 

molecular studies or cytogenetic data 
showed one or more abnormality 
associated with MDS

• Mutations at allele frequency ≥20% 
are considered adequate for the 
diagnosis of MDS 

Results:
Confirmed 
Negative

Confirmed 
Disease

MDSTraining (#294) 138 185

MDS Validation (#115) 92 39

AML (#108) 14 94
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Classification of patients based on molecular and 
cytogenetic studies

Distribution of patients with one, two, three, 
four, or five mutations in the training set

Flow panel and gating
• Standard 23-antibody panel for leukemia and lymphoma evaluation 
• Conventional gating to capture on the average 2623 different data points 
• Software which automatically captures and saves the following parameters from 

each quadrant from each gate: 
− Percentage of cells
− Mean intensity
− Dispersion in this quadrant (variance) for each antibody on the X and Y axes 
− Correlation coefficient between the X and Y dispersions

SOFTWARE
• Based on classical approach in flow cytometry data analysis.
• Feature added to provide more automated help in data analysis. 
• Use of advanced machine learning technologies (SVM) and other 

mathematical algorithms with custom distribution kernel to detect abnormal 
flow distributions. Gaussian Mixture models (GMM) are applied to automatic 
clustering and gating. A special graph algorithm was developed for automatic 
gate recognition. This system retains the traditional features such as gating 
definition and adjustments, 2D plots, and statistical tables. However, it provides 
automation at all analysis steps. Furthermore, the SVM method facilitates 
analyses far beyond the 2D or 3D limitation in the traditional approach. 

• The system provides automated automatic gate prediction, ability to be trained 
to provide automatic determination of normal versus abnormal plots and 
automatic determination of diagnosis. The training uses customized 
designation based on SVM, which is incorporated software.

• Software which automatically captures and saves all possible parameters from 
each gate. See figure below.

Automated capturing of all possible data 

• Percent
• Mean intensity X and Y
• Dispersion (variance) X and Y 
• Correlation coefficient between X 

and Y dispersions

• Univariate analysis showed 103 variables to be statistically significant in distinguishing MDS with adjusted P-values less than 0.05 after controlling for false 
discovery rate (FDR). 

• In multivariate analysis a lasso logistic regression model was used at first and selected 40 variables. 
• Using these variables, a predictive model was developed using a support vector machine (SVM) to identify MDS. 
• Upon testing this model using the leave-one-out procedure, the area under the ROC curve was 91.6%. 
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Coefficients from a logistic regression model using the 40 selected variables by LASSO An illustration of the SVM model using two variables 
derived based on principal component analysis

ROC curve for the SVM model based on all the test cases

• For further validation of this algorithm after integration 
into the software, we tested blindly an additional cohort 
of 115 patients that had bone marrow submitted for 
ruling out MDS. The algorithm correctly distinguished 
between MDS and non-MDS in 104 (90.4%) of these 
patients using a cut-off point at 0.5 and predicted the 
presence of cytogenetic abnormality or the presence 
of one or more genes mutated. However when 
corrected for cases misclassified, 
the sensitivity was at 97% and specificity at 93%.

• In addition, we tested cases with questionable 
diagnosis of AML. The same algorithm detected 
AML cases as abnormal with a sensitivity at 96% 
and specificity at 100% after correcting for 
misclassified cases.

• The algorithm classify AML cases with inv(16) or 
t(15;17) as normal. 

Score<0.5 Score≥0.5 False 
Positive

False 
Negative Missclassified

Sensitivity after 
adjusting for 

missclassified

Specificity after 
adjusting for 

missclassified

MDSTraining
(#294) 123 171 15 14

1 APL, 2 polymorphism, 2 complex 
cytogenetic abnormalities, 3 

DNMT3A<30%, 3 SF3B1, 1 TP53 but 
lymphoma, 1 TET2<30%

93% 89%

MDS Validation 
(#115) 86 29 6 5 1 JAK2 mutation, 3 poor gating 97% 93%

AML (#108) 14 94 0 14 2 Inv16, 2 APL, 2 poor gating, 1 T-ALL,
7 No blasts 96% 100%

Sensitivity and specificity were calculated after correcting for the misclassified cases. Only cases shown in red are 
included in the correction.
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Upon correlating the algorithm score with the 
number of mutated genes as a reflection of 
the severity of the disease, there was 
statistically significant (P< 0.0001) correlation 
between the score and the number of 
mutated genes


LogisticCoefficients

				Coefficients

		(Intercept)		-17.25590616

		mean.X..Mononuclear1_quad1_CD38FITC		-1.022825808

		mean.X..Mononuclear2_quad3_CD11cPC7		0.799647724

		mean.X..Mononuclear2_quad4_CD11cPC7		-3.905646369

		`mean.Y..Non-Debris3_gate1_SSINTLIN`		-2.520632909

		`mean.Y..Non-Debris3_gate2_SSINTLIN`		-4.139854469

		mean.Y..Mononuclear1_quad1_CD5PC5.5		4.428446801

		mean.Y..Mononuclear1_quad3_CD38FITC		1.061078992

		mean.Y..Lymphocytes1_quad1_CD56PE		2.472207563

		mean.Y..Mononuclear2_quad1_CD10APC		5.136190009

		mean.Y..Mononuclear2_gate1_KappaFITC		-3.965996749

		mean.Y..Lymphocytes3_quad1_CD13PE		2.912219834

		`cor.XY..Non-Debris3_gate2_CD34APC_SSINTLIN`		-3.083430851

		`cor.XY..Non-Debris3_quad4_CD16FITC_CD13PE`		-2.382382115

		`cor.XY..Non-Debris3_quad4_CD45KO_CD13PE`		-1.924858714

		cor.XY..Mononuclear1_quad2_CD2APC_CD5PC5.5		0.202544674

		cor.XY..Lymphocytes1_quad2_CD3ECD_CD5PC5.5		-4.237898712

		cor.XY..Mononuclear2_quad3_CD19PC5.5_CD10APC		-4.008146908

		cor.XY..Lymphocytes2_quad4_CD19PC5.5_KappaFITC		1.482148272

		cor.XY..Lymphocytes2_quad1_CD10APC_CD23ECD		-2.31600049

		cor.XY..Mononuclear3_quad2_CD13PE_CD64ECD		3.422856374

		`cor.XY..Mononuclear3_quad1_HLA-DRPB_CD13PE`		-2.024057304

		cor.XY..Mononuclear3_quad2_CD33PC7_CD117PC5.5		-0.694873592

		cor.XY..Lymphocytes3_quad2_CD45KO_CD16FITC		-1.569397578

		cor.XY..Lymphocytes3_quad3_CD13PE_CD33PC7		2.724124708

		cov.XX..tube1_gate1_CD56PE		-1.11304219

		cov.XX..tube2_Debris_SSINTLIN		0.584597652

		cov.XX..tube2_gate1_CD19PC5.5		-1.209329561

		cov.XX..Time_quad1_CD38FITC		-0.615808139

		`cov.XX..Non-Debris3_gate3_CD117PC5.5`		0.436366637

		`cov.XX..Non-Debris3_quad4_CD45KO`		0.487298338

		cov.XX..Mononuclear1_quad3_CD8PB		-1.066913719

		cov.XX..Mononuclear1_quad4_CD7PC7		1.616389735

		cov.XX..Mononuclear1_quad2_CD38FITC		0.705877756

		cov.XX..Lymphocytes1_quad2_CD7PC7		1.113005109

		cov.XX..Mononuclear3_quad4_CD19APCA700		0.977079957

		cov.YY..tube2_Debris_SSINTLIN		-0.918340912

		cov.YY..Time_quad3_CD38FITC		1.925437202

		cov.YY..Mononuclear1_quad1_CD19APCA700		-1.504586495

		cov.YY..Lymphocytes1_quad2_CD38FITC		-0.254887181

		cov.YY..Mononuclear2_gate1_LambdaPE		0.338400415
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