World Vaccine Congress Europe 2021

Detection and Deep Profiling of Immune Cells in HBV-infected Liver Biopsies

Anna Juncker-Jensen • Mate Levente Nagy • Erinn A. Parnell • Nickolas Stavrou • Qingyan Au • Judy Kuo • Eric Leones • Flora Sahafi • Kathy Pham • Julie Sakaki • Jessica Lin • Josette William Ragheb

NeoGenomics Laboratories, Aliso Viejo, CA

Background: Hepatitis B virus (HBV) infection is the main cause of cirrhosis and hepatocellular carcinoma (HCC), and with more than 250 million people worldwide living with chronic HBV presents a major global health problem. However, a detailed analysis of HBV pathogenesis and host immune responses are often hindered by access to sufficient amounts of liver tissues. Here we present a multiplexed immunofluorescence approach for deep profiling of host immune cells and HBV-infected hepatocytes with the goal of providing novel insights into HBV immunopathogenesis.

Methods: We used the mIF assay MultiOmyx[™] which utilizes a pair of directly conjugated Cyanine dye-labeled (Cy3, Cy5) antibodies per round of staining followed by a dye inactivation step, illustrated in figure 1. Using a 19-marker panel and proprietary cell segmentation and classification algorithms developed at NeoGenomics, we have analyzed the presence of HBVinfected hepatocytes and key immunophenotypes in 8 FFPE core needle biopsies from HBVinfected patients with chronic hepatitis.

Results: We used antibodies against HBcAg (4.7%) and HBsAg (13.1%) to quantitate the proportion of cells infected with HBV. Key immune cell types were quantitated using coexpressions outlined in table 2, with the major immune cell type present being T cells (7.2%), followed by Kupffer cells (6.6%), MDSCs (5.6%), NK cells (5.5%), dendritic cells (2.7%), and B cells (0.9%). Further subtyping of these immune cells can be seen in figure 2.

Overall we found a high density of immune cell types clustering indicating a high degree of immune interactions within the hepatic microenvironment.

Conclusions: With this study we provide proof of concept for the use of highly multiplexed IF analysis of liver biopsies, allowing for a detailed analysis of HBV pathology with potential implications for future therapies aimed at treating viral immune pathogenesis of the liver.

MultiOmyx Workflow and Biomarker Panel

Figure 1. A) MultiOmyx staining protocol (described in Gerdes et al. 2013. PNAS USA. 110:11982-7). Table 1) Protein Panel Composition. Table 2) Phenotyping of human immune cells. HBcAg: Hepatitis B core antigen, HBsAg: Hepatitis B surface antigen, CTL: cytotoxic T lymphocyte, MDSC: myeloid derived depressor cell, NK: natural killer.

Using MultiOmyx[™] mIF Technology to Characterize HBV Biopsies

MultiOmyx Overlay Images & Quantitation of Immune Cell Populations in HBV-infected Liver Biopsies

Figure 2. Parts of whole graphs displaying the proportions of the main immune phenotypes. Kupffer and T cells constitute the main immune phenotypes detected, while the main T cell subset detected is T cytotoxic cells.

Figure 5. Kupffer cells. Multiplexed overlaid images of A) Kupffer cells (CD68+CD163+). B) HBsAG+ and Kupffer cells (CD68+CD163+). C) PD-L1+ Kupffer cells (PDL1+CD163+), and D) DC-SIGN+ Kupffer cells (DCSIGN+CD163+).

Key Study Highlights

- We provide an extensive visualization and guantitation of immune subsets in patients with chronic HBV.
- Performing high-plex spatial immunohistochemical analysis can lead to valuable insights into HBV-pathology.

Figure 3. HBV-infected hepatocytes. Multiplexed overlaid images of A) HBcAg+ sAG+ cells. C) co-expression of HBcAG and HBsAG, and D) cells, T cells (CD3+), CTLs (CD3+CD8+), myeloid cells (CD11b+). Na,K-ATPase is used as a general tissue segmentation marker in figure 3-5.

Figure 4. T cells. Multiplexed overlaid images of A) T helper cells (CD3+CD4+) and CTLs (CD3+CD8+). B) PD-1+ T helper cells (CD4+PD1+) and PD-1+ CTLs (CD8+PD1+), C) HBsAG+ cells, and T cells (CD3+CD4+FoxP3+), and D) T cells (CD3+), and Kupffer cells (CD68+).

Figure 6. NK & dendritic cells. Multiplexed overlaid images of A) and dendritic cells (CD11c+MHCII+). B) Immature dendritic cells (CD11c+MHCII+DCSIGN+). C) H and NK cells (CD56+CD3-), and D) Activated NK cells (CD56+CD3-MHCII+).

Created with BioRender.com

anna.juncker-jensen@neogenomics.com