

RESISTANCE MECHANISMS TO BRAF INHIBITION IDENTIFIED BY SINGLE CIRCULATING TUMOR CELL-FREE TUMOR DNA MOLECULAR PROFILING IN BRAF-MUTANT NON-SMALL-CELL LUNG CANCER

Laura Mezquita^{1,2*}, Marianne Oulhen^{3,4*}, Agathe Aberlenc^{3,4}, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Mihaela Aldea¹, Marc Deloger⁵, Aurélie Honoré⁶, Marianna Garonzi⁷, Claudio Forcato⁷, Vann Lecluse⁸, Marc Deloger⁵, Aurélie Honoré⁶, Marc Deloger⁵, Aurélie Honoré⁶, Marc Deloger⁵, Aurélie Honoré⁶, Marc Deloger⁵, Aurélie Honoré⁶, Marc Deloger⁵, Aurélie Honoré⁸, Marc Deloger⁵, Aurélie Honoré⁸, Marc Deloger⁵, Aurélie Honoré⁹, Au

Abstract N#598

¹ Gustave Roussy, Université Paris-Saclay, Cancer Medicine Department, F-94805, VILLEJUIF France; ² Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), F-08036, Barcelona, Spain; ³ Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655 - INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, VILLEJUIF France; ⁴ INSERM, U981 "Identification of Molecular Predictors and Interval P Gustave Roussy, Université Paris-Saclay, Bioinformatics Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, Genomic Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, Genomic Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, Genomic Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, Genomic Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655 – INSERM US23 AMMICA, F-94805, VILLEJUIF France; ⁶ Gustave Roussy, Université Paris-Saclay, "Flow cytometry and Imaging" Platform, CNRS UMS3655 – INSER INIVATA Ltd, Babraham Research Park, Cambridge, UK; ¹⁰ Univ Paris Sud, Université Paris-Saclay, Faculty of Medicine, F-94270, LE KREMLIN-BICETRE France; *LM and MO contributed equally to the study; ^{\$DP} and FF contributed equally to the study

BACKGROUND

- Combination therapy with dabrafenib + trametinib demonstrated robust activity in patients (pts) with BRAF-V600E-mutant advanced non-small cell lung cancer (NSCLC)⁽¹⁾, but its resistance mechanisms are poorly known ^(2,3).
- Non-invasive methods including circulating tumor cells (CTCs) are crucial to develop for the implementation of precision medicine in the treatment of NSCLC.
- Liquid biopsy components such as CTCs and cell-free (cf) tumor DNA can provide a comprehensive genomic picture of tumor content ⁽⁴⁾.

AIM

Molecular profiling of single CTCs from patients with BRAF-V600E-mutant NSCLC was performed to carry out a pilot study to identify resistance mutations at failure to dabrafenib + trametinib and to compare the mutations detected on CTCs to the mutations found on cfDNA and tumor biopsies

METHODS

- Eight patients with advanced BRAF-V600E-mutant NSCLC at failure to dabrafenib plus trametinib were prospectively enrolled between Jul 2018 and Mar 2019 at Gustave Roussy (IDRCB2008-A00585–50). Bloods samples (30-50mL) were collected and matched tissue-cfDNA were available for some patients
- Single CTC isolation strategy included RosetteSep enrichment, immunofluorescent staining (Hoechst33342/CD45/pan-cytokeratins) and fluorescence activated cellsorting (Fig. 1)

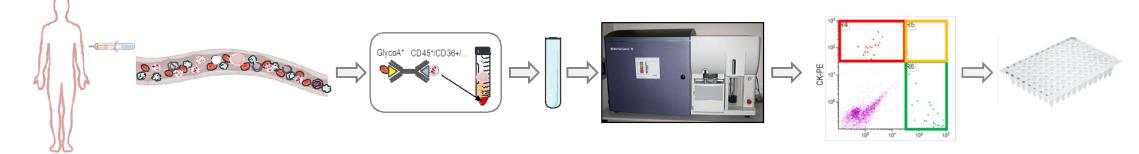
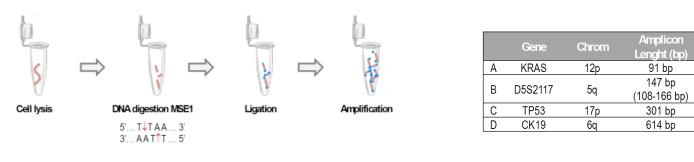
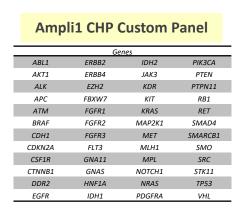




Figure 1. CTC isolation process

The process to identify CTC mutations included Ampli1 whole-genome amplification, quality controls, multiplex targeted PCR with the Ampli1 CHPCustomBeta cancer panel developed by (Menarini Silicon Biosystems) and next-generation sequencing (NGS) (**Fig. 2**)

Figure 2. CTC molecular profiling

- Liquid biopsies (cfDNA) were analyzed using InVisionFirst[®]-Lung
- **<u>Tissue samples</u>** were analyzed using targeted NGS in the MATCH-R trial (Recondo G; NPJ Precis Oncol 2020)
- Clinical data: clinical and molecular data were collected

Imezquita@clinic.cat

@LauraMezquitaMD

Study population & Samples

A total of 7 patients were studied

- The median of Hoechst33342+/CD45-/pancytokeratins+ CTCs isolated by patient was 20 (8-28)
- Matched tissue-CTCs for 4 patients
- Matched tissue-cfDNA-CTC were available for 4 patients (Table 1)
- Baseline characteristics of the study population is summarized in Table 2

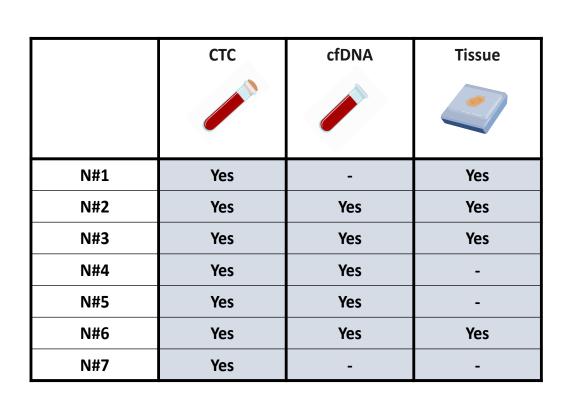


Table 1. Type of samples available for analysis at the same timepoint of CTC collection

	Age (years)	Gender	Smoking	Histology	N# mts sites	Line of therapy	Progression to therapy	PFS (month s)	Treatme nt duration (months)	CT60C, cellSearc h (/7.5mL)	CTCs, FACs (/30mL)
1	65	Female	Non- smoker	Adeno	≤2	1st line	Dabrafenib + Trametinib	35	46	0	25
2	69	Female	Smoker	Adeno	≤2	2nd line	Dabrafenib + Trametinib	13	17	14	16
3	58	Male	Smoker	Adeno	≤2	1st line	Dabrafenib + Trametinib	10	13	NA	23
4	62	Male	Smoker	Adeno	≤2	2nd line	Dabrafenib + Trametinib	49	30	0	17
5	68	Male	Smoker	Adeno	>2	2nd line	Dabrafenib + Trametinib	6,4	7	0	8
6	81	Female	Non- smoker	Adeno	≤2	1st line	Dabrafenib + Trametinib	14	16,4	3	26
7	69	Male	Non- smoker	Adeno	≤2	2nd line	Dabrafenib + Trametinib	60	ongoing	0	23

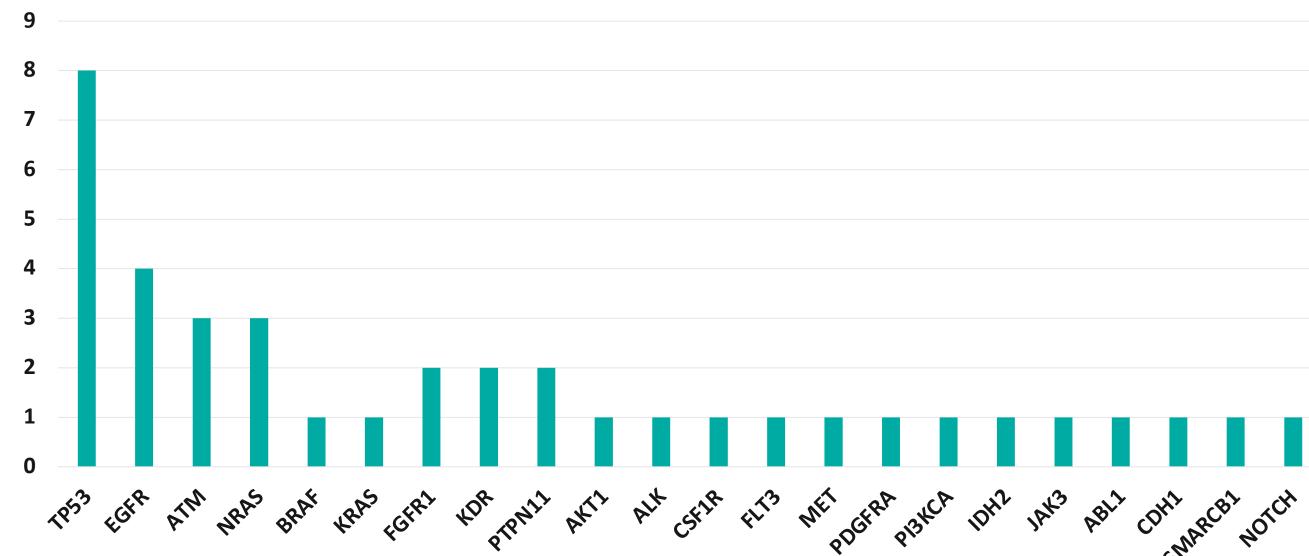
Table 2. Baseline characteristics of the study population.

High heterogeneity in CTCs at PD to BRAFi + MEKi

A wide spectrum of mutations in CTCs was observed at treatment failure that were involved in the main cancer pathways

Among them,

- MAPK pathway (n=3; NRAS, KRAS,...)
- Protein kinase pathways (n=4; EGFR, ALK,...)
- DNA repair pathways (n=2; AKT1, ATM,...)
- Tumor suppressor gene (n=5; *TP53*)



MAPK + PI3KCA + DNA repair + **Protein kinases pathways**

Signal transducter + **Tumor Suppressor** Gene pathways

> **Tumor Suppresso** Gene pathway

- than one cancer pathways

Table 3. Cancer pathways involved in CTC samples by patient (molecular profiling of 1-6 CTC/patient)

RESULTS

Cancer Pathways altered in CTCs in BRAF^{V600E}NSCLC tissue biopsies and cfDNA **Protein kinases + Chromating** remodeling + JAK-STAT pathways BRAF^{V600E} was only detected in one CTC (N#3) N#1 N#7 MAPK + Protein between CTCs & matched tumor and cfDNA kinases + Signal transducters + Tumor N#6 N#2 **Suppressor Gene** mutations between CTCs & matched cfDNA **Pathways** MAPK + DNA repair + N#5 **N#3 Tumor Suppressor Gene Pathways** N#1 BRAF Other I BRAF N#2 **Protein kinases + Cell junction Organization Pathways** PTPN11 N#3 N#4 BRAF Figure 3. Cancer pathways involved, according to the genomic alterations identified in each patient (molecular profiling of 1-6 Othe CTC/patient); each sector correponds to one patient N#6 BRAF Genomic alterations detected in CTCs in BRAF^{V600E}NSCLC N#7 BRAF Others: In the same CTC, several mutations were observed in 5/7 patients, commonly involving more The most common genomic alterations were **TP53**, followed by **EGFR**, **ATM** and genes involved CONCLUSION on the **MAPK pathway** (NRAS, KRAS, BRAF) **REFERENCES**

Jun;132:211-223.

Figure 4. Description of the genomic alterations identified in the overall population (Number of cases)

CTC, cf-DNA & tissue analysis in BRAFV600ENSCLC

• A higher degree of mutational diversity was also observed in CTCs compared to tumor

In the 3 patients with an available tumor/liquid biopsy, only one shared mutations

In the 4 patients with an available liquid biopsy for CTC/cfDNA analysis, only one share

CTC	cfDNA	Tissue (NGS)	Concordance for <i>BRAF</i> mutation	Concordance for other aterations
FV600E: not detected mutations: FGFR, JAK3, ABL1, SMARCB1	-	BRAFV600E: detected Other mutations: NRAS, AKT1, NRAS	Non	Non
FV600E: not detected ers: EGFR, NRAS, KRAS, , FLT3, MET, TP53, FBXW7	BRAFV600E: detected No other mutations	BRAFV600E: detected No other mutations	Non	Non
RAFV600E detected Others: TP53, ATM	BRAFV600E: detected Others: TP53 (ATM: not covered)	BRAFV600E: detected Others: TP53	Yes	Yes (for TP53 variant)
FV600E: not detected s: EGFR, FGFR1, CSF1R, MET, TP53, CDH1	None detected	-	Non	Non
FV600E: not detected Others: IDH2, TP53	BRAFV600E: detected Others: KRAS, TP53	-	Non	Yes (for TP53 variant)
FV600E: not detected KDR, AKT1, ALK, PDGFRA, PI3KCA, ATM	_	-	NA	NA

Table 4. CTCs, cfDNA and tissue concordance in the study population

• Single CTC profiling reveals a wide spectrum of therapeutic resistance mutations not detected by other analyses in pts with BRAF^{V600E}-mutant NSCLC at failure to dabrafenib plus trametinib

Importantly, our results also highlighted the high CTC mutational heterogeneity present at resistance to dabrafenib plus trametinib in patients with BRAF^{V600E}-NSCLC

Integration of single CTC sequencing to tumor & cfDNA analysis, provides important perspectives to assess heterogeneous resistance mechanisms and to guide precision medicine in BRAF^{V600E}- NSCLC

Planchard D, Smit EF, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously untreated BRAF^{V600E}-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017 Oct;18(10):1307-1316.

2. Facchinetti F, Lacroix L, Mezquita L, et al. Molecular mechanisms of resistance to BRAF and MEK inhibitors in BRAF^{V600E} non-small cell lung cancer. Eur J Cancer. 2020

3. Ortiz-Cuaran S, Mezquita L, Swalduz A, et al. Circulating Tumor DNA Genomics Reveal Potential Mechanisms of Resistance to BRAF-Targeted Therapies in Patients with BRAF-Mutant Metastatic Non-Small Cell Lung Cancer. Clin Cancer Res. 2020 Dec 1;26(23):6242-6253. doi: 10.1158/1078-0432.CCR-20-1037. 4. Pailler E, Faugeroux V, Oulhen M, et al. Acquired Resistance Mutations to ALK Inhibitors Identified by Single Circulating Tumor Cell Sequencing in ALK-Rearranged Non-Small-Cell Lung Cancer. Clin Cancer Res. 2019 Nov 15;25(22):6671-6682.