TP53/NPM1-mutated acute myeloid leukemia as a molecularly distinct disease entity.

Frank J Scarpa, Madhuri Paul, Rachel Daringer, Wendy A. Wolfson, Fernando Lopez-Diaz, Sally Agersborg, Vincent Anthony Funari, Lawrence M. Weiss, Forrest J. Holmes Blocker; NeoGenomics Laboratories, Aliso Viejo, CA

	<u>C</u>
Background	50 -
TP53-mutated acute myeloid leukemia (AML) is a distinct disease entity associated with a dismal prognosis. This disease group is distinguishable by its low frequency of SNVs, unremarkable transcriptional signatures, and lower leukocyte and myeloblast counts compared to TP53 wild-type disease. Response to gold-standard hypomethylating agents is typically transient. NPM1 mutations in this disease subset are rare despite the fact that NPM1 has been shown to negatively regulate the tumor suppressive functions of p53.	- 40 - 30 - 02 - 20
Methods	10 -
Bone marrow, peripheral blood, or FFPE tissue samples from 10,118 patients with suspected myeloid disease were sequenced using a dual DNA/RNA 297 gene myeloid panel. Results were validated in a separate independent dataset using a 54 gene TruSight myeloid panel (N = 2463). FISH/cytogenetic data was analyzed across myeloid disease. Patients with confirmed AML (n = 460) were included in the NGS/Flow cytometry portion of this study. Statistics were performed using Fisher's exact test for categorical variables, two-tailed T-test for continuous variables, and two-tailed Mann-Whitney U for flow cytometry data.	Figure 1: reflectin significa patients DNMT3, these di
Results	50 - 40 -
All TP53-mutated myeloid disease (n = 1282 / 10,118) was associated with fewer co-mutations except DNMT3A (13.4%; n = 172), and complex cytogenetics (36.4%; n = 134/381). TP53+/NPM1+ status across all myeloid disease was not associated with a complex karyotype (7.6% vs 38.5%; 1/13 vs. 133/368, p = 0.02). Among AML patients NPM1+/TP53+ patients (n = 18) were more co-mutated with	V 10 - 20 - 10 - 0 -

patients, NPMI+/ 1955+ patients (n – 18) were more co-mutated with DNMT3A (33.3% vs. 10.3%, P = 0.01), FLT3 (33.33% vs. 2.5%, P < 0.0001), IDH1 (27.8% vs. 4.4%, P = 0.002), IDH2 (22.2% vs. 6.4%, P = 0.03); and PTPN11 (22.2% vs. 2.5%, P = 0.003) when compared to TP53+/NPM1- patients. NPM1+/TP53+ AML had more mutations in recurrently mutated genes (4.5 vs 2.1; P < 0.0001) than TP53+/ NPM1- AML. TP53+/NPM1- patients had a significantly lower mean percentage of myeloblasts (25%) when compared to TP53+/NPM1+ (51%; p=0.01) and NPM1+/TP53- patients (51%, p=0.001).

TP53 allele frequency vs NPM1 status

Figure2: Boxplots of NPM1 and TP53 VAF demonstrating clonal dominance and similar VAFs regardless of NPM1 or TP53 status.

Figure 3: Boxplots demonstrating burden of protein coding mutations across patient groups. Like classic TP53-mutated disease, TP53+/NPM1- patients had a significantly lower burden of protein-coding mutations (~2 per patient) with patients with much higher burdens of mutations representing outliers. Conversely, this signature wasn't present in TP53+/NPM1+ despite their TP53-mutation status. NPM1+/TP53+ AML had more mutations in recurrently mutated genes (4.5 vs 2.1; P < 0.0001) than TP53+/NPM1-AML.

#7030

Figure 5: Chord diagram of NPM1+/TP53+ patients demonstrating an abundance of SNVs, insertions, and deletions in recurrently mutated genes and their co-occurrences with each other. Each gene is represented by a unique color, with the width of the "ribbons" denoting the number of patients with a particular molecular aberration in that gene. Colors are reversed for better visualization.

Key Points

• TP53+/NPM1+ AML harbors molecular signatures which clearly distinguish it from ordinary TP53-mutated AML.

- TP53+/NPM1+ AML is more reflective of *de novo* and NPM1+ AML.
- Our work suggests that this subset of patients may have differing therapeutic implications and clinical outcomes than classic TP53mutated AML.

• Although TP53-mutated AML patients overall are associated with a dismal prognosis and therapy resistance, further clinical studies in those with and without NPM1 mutations are recommended to potentially identify a subset with better prognosis.